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REFERENCE SYSTEM CHARACTERISTICS FOR MANNED 

STOPOVER  MISSIONS  TO  MARS AND  VENUS 

Jeny M. Deerwester  and  Susan M. Norman 

Office of  Advanced Research and  Technology 
Mission Analysis Division 

Moffett  Field, Calif. 94035 

SUMMARY 

This document  sets  forth  reasonable  and  consistent  trajectories,  system  elements,  features of 
the  natural  environment,  and overall performance  requirement  for  manned  stopover missions to 
Venus  and Mars.  Use of  the  most  recent  interplanetary  trajectory  analyses  provided  a  unified 
framework  for  comparing mission modes  and  launch  opportunities.  The scaling laws that define  the 
spacecraft  and  propulsion  systems  and the space  environment were  established.  The  trajectory  data 
and  the scaling laws  were combined  and values calculated  for  the  required mass in Earth  orbit 
(MEO) for  each  of  the missions under  study. 

The  scope  of  the analysis is as  broad  as is consistent  with  a  reasonably concise presentation of 
the  results. Missions to both  Venus  and Mars are included,  and,  for  the  latter  planet,  both  orbiting 
and  landing missions are compared.  For all the missions, the  effects  of  planetary  parking  orbit 
eccentricity  and mission duration  are  shown  since  each  has  a  strong  influence  on  the  total mission 
requirements.  Comparisons are made of various representative  high-thrust  propulsion  system 
options,  including  space-storable  and  cryogenic  propellants,  nuclear  rockets,  and  aerobraking  in 
appropriate  combinations  for  the  various stages. 

Analysis results  are  presented  as  follows:  The ME0 requirements  for  a  representative  stopover 
mission to Venus  and  for  stopover missions to Mars during every launch  opportunity  between 
1980-2000 for  the  most  attractive mission  profiles  are  summarized.  In  addition,  the flight times, 
mission dates,  and  velocity  requirements  are given. Finally,  the scaling laws  used in the  ME0 
calculations are discussed. These scaling laws define  the  space  environment  and  the  spacecraft  and 
propulsion systems. As reported  in  this  document,  the  results  constitute  an  interim  description of 
present  best  estimates  of  future  technologies  and  therefore  should provide a  useful  set of nominal 
system  characteristics  and  reference missions to serve as  a  common basis for  future  studies. 

INTRODUCTION 

Considerable  study  has  been  devoted to the  definition of the  characteristics and requirements 
of manned  planetary missions. This work  has  ranged  from  broad  comparisons of alternate mission 
modes,  launch  opportunities,  and  spacecraft  systems to more  detailed  examinations of  various 
elements of such missions. Results  have  been  sufficient to achieve significant  agreement  among  the 
various  analysts  on  many  of  the mission factors involved. 



However, the  detailed  results  of  such  studies  are  often a t  variance regarding the  quantitative 
description of the  various  environmental  characteristics,  system  elements,  and overall performance 
requirements. This is  not to state  that  some  results  are  “correct”  or  that  others  are “wrong.”  The 
variations  are  simply  a  consequence of the  uncertainties  inherent in the  prediction of future 
technology. 

This document  sets  forth  consistent  characteristics  for  advanced  systems  and  defines  the 
properties  of  desirable flight profiles  for  stopover missions to Venus  and Mars. This common  set of 
nominal  system  characteristics  and  the  reference missions can serve as a basis for  future  studies. 
None  of  the  details  set  forth  here  can  be  construed  as  final  or  “approved”  in  any sense. Rather,  they 
are  provided as an  interim  description of present  best  estimates  of  future  technologies. With such 
reference  systems  defined  and available for baseline purposes, new  results  that evolve from  detailed 
studies  of  the  system  elements will be  of  more  immediate  utility. 

The  results  contained  in  this  report were  developed as follows:  First, use of the  most  recent 
interplanetary  trajectory analyses provided  a  unified  framework  for  comparing mission modes  and 
launch  opportunities.  Second,  the scaling laws that  define  the  spacecraft  and  propulsion  systems 
and  the  space  environment were  established  from discussions with  those  who  are actively involved 
in particular  technical  areas  within NASA, results of appropriate  contractor  studies,  and analyses 
conducted  within  the Mission Analysis Division. Third,  the  trajectory  data  and  the scaling laws were 
combined  at  the Mission Analysis Division and  the  required mass in Earth  orbit (MEO)  calculated 
for  each of the missions under  study. 

Presentation  of  the  detailed  trajectory  information  and scaling laws is such  that  the  resulting 
ME0 values can  be completely  reproduced if desired.  More  important,  comparative  ME0 values can 
be computed  on  a  consistent basis by  any  interested user who might wish to investigate the  effect of 
changing  a particular  input  datum  or scaling law. (A sample ME0 calculation is included in the 
appendix.)  In  addition,  the  ME0  results are presented  in  bar  chart  form  for  selected mission modes, 
launch  opportunities,  and  propulsion  system  options. These  specific  results  should  be of direct use 
in program  planning  activities  where  the  major  implications  of  the various alternatives are of 
interest. 

The  scope of the analysis is as broad  as is consistent  with  a  reasonably concise presentation of 
the  results. Missions to both  Venus  and Mars have  been included  for  the  1980 to 1999  time  period. 
ME0 requirements  for Mars vary significantly during  this  time  period. Venus mission requirements, 
however, are relatively  consistent;  therefore,  the  results  for missions to Venus  are  shown  for  a single 
typical  opportunity. Direct mission profiles to Mars and  Venus  are  examined as well as the  Venus 
swingby  mode for Mars missions. In all cases, planetary  stopover times of 30 days are considered. 
The  planetary  capture  mode analyses include both propulsive  and  aerodynamic  capture  into circular 
and  elliptic  orbits. At Mars, ME0  requirements  for  orbiters  and  landers are compared, while at 
Venus  only  orbiters  are  analyzed. 

The  four mission profiles are illustrated  in figure 1 for  representative flight times.  Other  flight 
times are included in the analysis, however, since the  flight  time has a significant effect  on  the  total 
mission requirements. During  an outbound swingby (fig. l(a)),  the Earth-Mars opposition  occurs 
during  the  return leg so that  the  actual  launch  year is always 1 to 2 years earlier than  the  year of 
opposition.  For  the  inbound swingby (fig. l(b)), however,  opposition  occurs  during  the  outbound 

2 



(a )   Mors  s topover  
Out  bound  Venus  swingby 

(b) Mors   s topover  
In   bound  Venus  swing  by  

( c  1 M a r s   s t o p o v e r  - D i r e c t  ( d 1 Venus  stopover 

Figure 1 .- Representative  mission profiles. 
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leg so that  the  launch  year is usually the  same  as  the  year of opposition. Similarly, for  the Mars 
direct mission  (fig. l(c))  and  Venus mission (fig. l(d))  opposition  and  conjunction,  respectively, 
occur  during  the  outbound leg. 

In  addition to an examination  of  the  effects  of mission mode,  capture  orbit  eccentricity, 
launch  year,  and  orbiter  and  lander mass  requirements,  various  representative  high-thrust  propulsion 
system  options have also been  selected  for  comparison.  These  include space-storable and  cryogenic 
propellants,  nuclear  rockets,  and  aerobraking  in  appropriate  combinations  for  the  various 
maneuvers.  No  reusable stages are considered,  and  aerodynamic  reentry is assumed at  Earth  return: 
the sensitivity of ME0 to such  operational  philosophies,  however, is included. 

MASS IN EARTH  ORBIT  REQUIREMENTS 

ME0  requirements  for  manned  stopover missions to Venus  and Mars are presented  in  this 
section. Results are  shown  for desirable mission  profiles  and  for  a  wide  spectrum  of possible 
propulsion  system  options.  The  details  of  the mission, system,  and  environmental  properties  used in 
the  computations  are discussed in subsequent  sections of this  document. 

The  results  presented  here  are  intended primarily to be  used  on  a  comparative basis; therefore, 
the  ME0  results  for  any given mission are subject to some  qualifications in that  certain  items have 
not been  included  explicitly in the  calculations. ME0 values will increase above those  contained 
herein because  of provisions for  launch delays, abort  requirements, inclusion of the  ascent  load 
bearing shell (discussed under Scaling Laws),  assembly  in Earth  orbit  or  standardization of modular 
elements.  Quantitative  effects  of  such  factors,  however, are presented  later as appropriate. 

The  results  are displayed in 13  bar  charts - one  for  each  propulsion  system  option  that  has 
been  considered. Figure 2 is a  sample  chart  that  defines  the  various mission options and legends. On 
the  actual  charts,  only  the mission definitions  and  the  type of  propulsion  system are labeled 
explicitly. 

For  each  opposition  and mission  mode (i.e., direct flight or  Venus swingby), eight values of 
ME0 are shown  for  each  propulsion  system. At Mars the  four values to  the left  represent  the 
requirements  for  lander missions, while the  four values to the  right  represent  requirements  for  the 
orbiter missions. The  respective  weights  off-loaded at  Mars are  about 55,000 kg (1 20,000 Ib) and 
10,000 kg, respectively. For Venus,  only  one  representative  mission is shown since the  ME0 
requirements  do  not change  significantly  throughout  the  Earth-Venus  synodic cycle. Only  orbiter 
missions are included  at Venus. The  four  left  and  four  right values represent  probe  weights  of 
55,000 kg and  10,000 kg, respectively. ME0  requirements  for  other values of off-loading at  Mars or 
Venus can be approximated  by  linear  interpolation  between  the values shown. 

Four  ME0 values are  designated  for  each of the  lander  and  orbiter missions. The  two values on 
the  left  apply to circular  capture  orbits  at  the  planet;  those  to  the right apply to elliptical capture 
orbits where the  eccentricity is held  constant  at 0.7. ME0  requirements  for  other  eccentricities can 
be  accurately  estimated  by  linear  interpolation. 
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N C S A 4 Propulsion  system  opt ion:  

Ear th   depar tu re  N -Nuclear  

Planet  departure S -  Space  s torable 
Ear th   a r r i va l  A -  Aerodynamic 
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0 Nominal   mission * *  
Minimum  energy  mission 

Lander * Orbiter 

0 
Y 

10 
0 
d 
W r 

Circular " 
Elliptic 
capture 
orb i t  

* Applies  to  Mars  missions  only.  For  Venus 

missions  results  indicate M E 0  fo r   an   o rb i te r  
mission  wi th  probe  weight  equal  to Mars 
Excursion  Module  weight  for   g iven  propuls ion 
sys tem  and  o rb i t   eccent r i c i t y .  

** 
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Out bound swingby Mission  mode 

w Figure 2.- Mass in Earth  orbit  requirements - explanatory  chart. 



The  left-hand ME0 value for  each  type  of  parking  orbit  refers to a  “nominal”  mission;  the 
value to the  right  refers t o  a  minimum energy  mission.  These two criteria  for  selection  of  the 
mission are  explained in the  next  section.  The  differences  in ME0 between  such  missions  are  due t o  
variations  in mission duration.  Typically,  for  the  direct  flight  mode to Mars or Venus,  the mission 
durations  are 400 days  and 460 days  for  the  nominal  and  minimum energy  missions,  respectively: 
for  the  Venus swingby mode,  corresponding  typical values are 480 days  and 620 days. 

At the  top of  each  chart,  the  spacecraft  propulsion  system  applicable to  that  chart is 
designated by a  combination  of  the  letters A, C, N, and S, each of which  refers to one  of  the 
following  systems: 

Aerodynamic  deceleration. This mode is an optional  mode  of  capture at  the planet:  a vehicle 
with an L/D of 1 .O is assumed. Also because the  Earth  entry  speeds associated  with the  more 
desirable mission profiles  are  usually moderate,  this  mode is used at  Earth  entry  without  prior 
propulsive  deceleration. 

Cryogenic  propulsion  systems.  This  analysis  considers 02 /H,  systems  developing  a  specific 
impulse  of 450 sec. 

Nuclear  propulsion  systems. A specific  impulse of 850  sec is taken as  a  representative  value. 

Space-storable  propulsion  system class. A  representative  system, FLOX/CH,, is considered 
here,  and  develops  a  specific  impulse of 405 sec. 

The  characteristics  of  these  propulsion  systems  are discussed in more  detail  under Scaling 
Laws. In  each  four  letter  sequence,  the  leftmost  letter  indicates  the  system used at  Earth  departure. 
Continuing  toward  the  right,  each  letter  represents  the  type  of  propulsion  system  employed  at 
planet arrival, planet  departure,  and  Earth arrival,  respectively. All propulsion  system  combinations 
that seem even marginally  desirable are considered:  combinations  that are obviously inappropriate 
are not  included.  For  example, “CSNA” is not given since the  development  and/or use of three 
entirely  different  propulsion  systems is not likely - and  certainly  not in the  sequence  indicated. 

ME0  requirements were determined  for every combination  of mission mode,  propulsion 
system  option,  and  opposition  year.  Each  bar  chart,  starting in the  upper  left  corner,  shows  the 
mission profile that  yields  a  discemible  minimum in the  ME0  requirements  for  the  1980 Earth-Mars 
opposition.  Reading  toward  the  right,  the  most  attractive profile for  each  subsequent  opposition is 
indicated.  Note  that  during all but  the  1997  opposition,  the  Venus swingby  mode is included.’ 
During  those mission opportunities in which neither  the  direct  flight  mode  nor  the  Venus swingby 
mode  is  substantially  superior  from  an ME0  standpoint,  results  for  both  modes are shown. 

The  numerical  results  are  shown in figures 3(a) - (g) and  4(a) - (f)  for propulsive and 
atmospheric  capture at  the  planet, respectively.  The ME0 requirements are shown in units  of 
lo5 kg. (Ths unit is nearly  equivalent  to  the M E 0  capability of the  Saturn V.) The  system 
characteristics  employed in the analysis  reflect  estimated  technology circa 1975  and  thus,  strictly 
speaking,  apply  only to  flight  operations in the 1980’s.  These  same  assumed  characteristics, 
however, were also  applied to  the mission opportunities in the 1990’s. 

‘ A s  discussed in the  next  section,  direct  trips  during five opposition  periods were eliminated because of 
excessive velocity  requirements. 
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For  each  capture  mode,  the figure sequence is organized generally in  order of increasing ME0 
requirements.  Obviously,  there  are sizable variations  in  these  requirements  when  propulsion  systems 
and  capture  modes of such diverse characteristics  are  considered. Of significance to program 
planning activities, however, is the equally  obvious  conclusion  that regardless of the  propulsion 
system(s) that may  be  developed, missions to both Venus  and Mars can  be  scheduled  during  any 
launch  opportunity. A several-fold variation  in ME0  requirements  throughout  the Mars synodic 
cycle  need no longer  be  considered.  Variations  that  do  exist  in  the  requirements  could  be  further 
reduced  by  eliminating  from  consideration missions in  the  few  remaining  abnormal  opportunities 
(e.g., 1984,  1990,  and  1997). 

MISSION DESCRIPTION 

This section  presents  the  salient  trajectory  characteristics of the  direct flight mode  and  the 
Venus  swingby mode  of  round  trip  stopover missions to Mars. The  results are based on  the  data of 
references  1  and 2. In  many cases, these  characteristics  lead to a  specification  of  the  most desirable 
flight  modes  during  a given opposition  year  without  recourse  to  subsequent ME0 calculations.  The 
modes are listed  in  terms  of  the  year  of  Earth-Mars  opposition  rather  than  launch  year.  Only  one 
representative  stopover mission to  Venus is included since the  velocity  requirements are very similar 
for  other  conjunction  years (ref. 1).  The  effects of capture  orbit  eccentricity and launch delay 
penalties  on the velocity  requirements  are also briefly discussed. 

Trajectory  Characteristics 

Based on  the mission velocity requirements,  the flight modes listed below should be 
eliminated  from  further  consideration  in  program  planning  activities (ref. 3): 

1980  direct 
1982  direct 
1988  direct 
1993  direct 
1995  direct 
1997  Venus swingby 

Mission velocity 
remaining missions are 

requirements  (ZAV)  and  Earth  entry  speeds  (Ve)  associated  with  the 
shown in figures 5(a) - (k) as a  function of  mission duration  for propulsive 

and  atmospheric  capture into a  circular  orbit at  the  planet.  The  data  apply  to  stopover  times of 
30 days. Data for  stopover  times of 0 and 60 days are given in  reference 2. These  data  indicate  that 
the changes  in mission velocity requirements are generally not more  than 10 percent so long as 
mission durations are allowed to change. The mission velocity consists of the  Earth  and  planet 
departure impulsive velocity increments  for  atmospheric  capture  and  includes  the  planet arrival 
impulsive velocity increment  for propulsive capture. Each curve was  developed by  selecting 
departure  and arrival dates  at  Earth  and  the  planet  that minimize  ZAV for  each  trip  time on the 
curve. 

2Alternatively, ME0 might be the criteria  used in the selection of these  dates. Evidence indicates (e.g., refs. 3, 
4), however, that  this  additional  complexity is unnecessary as it usually  results in departure  and arrival dates  that  are 
identical  with those determined  by  the procedure used here. 
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Figure 5.- Mission velocity and  Earth  entry speed vs. total  trip time. 
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Given the  trip  time-CAV curves, it is desirable to select  one or two  trajectories to be  used in 
the  ME0 comparison.  A  common mission selection  criterion is one of minimizing MEO. Although 
the weights of various  system  elements increase with  trip  time (e.g., life support  system,  meteoroid 
protection,  cryogenic  propellant  insulation),  such  a mission can usually be approximated  by 
minimizing  CAV. Two  factors of major  importance,  however,  remain  unaccounted  for  in  a 
minimum ME0 mission, namely,  system  reliability  and  psychological  and physiological effects of 
long  duration  space missions on  the crew. While it is not possible to assess these  factors 
quantitatively at  present,  it  is  recognized  that mission durations  shorter  than  those  for which ME0 
is minimized  may well be desirable. Thus,  a  second  criterion  for  the  selection  of missions that may 
satisfy  these  qualitative  requirements,  and  can easily and  consistently  be  applied to trajectory  data 
alone, is that of simply  minimizing  the  product of total  trip  time  and mission velocity requirements. 
These missions, indicated as “nominal” missions in figure 5  result  in  total  trip  times  approximately 
25  percent  shorter  than  those of  minimum mission velocity  (or  minimum MEO) at  the  expense of 
less than 1  0-percent increase in  total mission velocity.  The  effects of  these  two  distinct missions on 
ME0  requirements are shown in figures 3 and  4.3 

Figure 5  indicates  that while the  direct  and swingby  modes  can  be  favorably compared  on  the 
basis of  CAV,  a similar comparison  on  the basis of Ve may  not be  favorable.  In  the  1984 
opposition,  for  example,  the  direct  mode  velocity  requirements  are  much less than  those  for  the 
swingby  mode. Consequently,  the ME0 is also less. As shown in figure 5(c),  however,  the  Earth 
reentry  speeds  associated  with  the  direct  mode are much higher. Regardless of the  year of 
opposition  the  direct  mode  entry  speeds are never  below about 15 km/sec  (49,000  ft/sec)  and  are 
usually much  higher,  whereas  the  swingby  mode  reentry  speeds are never  above about 14 km/sec. 
For swingbys  where the  nominal mission may  exceed  this  limit,  an  increase in the  trip  time of about 
20 days will reduce  the  entry  speed to  not more  than  this value. Even greater  reductions in Ve to a 
range of 11.5  to 12.5  km/sec (i.e., less than  41,000  ft/sec) can  be achieved for all of the swingby 
missions with  trip  times  of  no  more  than  555 days. 

Since low entry  speeds  and  short  trip  times are desirable,  in  some  opposition  years  both flight 
modes are included even though  one  flight  mode is obviously superior  to  the  other in terms of 
velocity requirements. In particular, in  view  of the  desirability of low entry  speeds, M E 0  data were 
computed in some  opposition  years  for  the swingby mode even though  the mission velocity 
requirements may  be somewhat higher than  those  associated  with  the  direct missions. Conversely, 
because the flight times  are generally shorter  for  the  direct  mode, ME0 requirements were 
computed  for  both  modes  in some  years  even  though  the velocity requirements are somewhat 
higher for  the  direct  mode. 

All the energy requirements are expressed in terms of impulsive velocity increments. Since 
hyperbolic excess speed  frequently is used  instead,  velocity  increments  required to  enter or leave 
circular orbits  as  functions of hyperbolic excess speeds at  Earth,  Venus,  and Mars are  provided in 
figure 6. 

The  detailed  characteristics of the  selected missions are listed in tables I(a) and l(b)  for 
propulsive and  atmospheric  capture, respectively. All the  pertinent  information  about  the missions, 

3 A  few cases may be noted  in figure 4 for  which the M E 0  is less for  the  nominal mission than  for  the 
minimum  energy mission. These  cases  occur  when the savings  in propellant  requirements  afforded by the longer 
mission durations  are  counteracted  by  the  attendant  inclease  in mission module  weight. 

~~ 
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Impulsive  velocity  increments 
for 500 km  circular  orbits 

.4 
Hyperbolic excess speed, EMOS 

.6 

Figure 6.- Impulsive velocity increments  (Earth mean orbital  speed (EMOS) = 29.8 km/sec). 
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TABLE 1.- MISSION  MODE  COMPARISON; 30 DAY STOPOVERS 

(a) Propulsive capture at  the planet 

Mission Selection 
Criterion 

Trip Peric Are Pass9 Lvd Ard Pass? (b) (a) Time 
zAv LvfB VARe AVLVd AVAFld &LVB 

(C) 

1980  Outbound  Swingby  Nominald  500  11.81  4.30  4.19  3.33  14.13 
Minimum  energye  680 10.23 4.30  3.40 2.53  14.72  3840 

1982  Inbound  Swingby  Nominal  520 11.70 4.13  2.68 4.89  13.97  4990 
Minimum  energy  620 10.49 3.65  2.33 4.52  12.17  4930 

1984  Direct  Nominal 
6200 

1986  Outbound  Swingby  Nominal 

1986  blrect  Nominal  12.28  3.80  3.28  5.20  15.23  6560  6700  6730  6960 1 400 I 11.17 1 3.58 I 2.67 I 4.92 I 16.30 1 6540 I 1 6720 I 6750 I 1 7000 1 1 Minimum  energy  460 

1988  Inbound  Swingby  Nominal 
Minimum  energy 

1990  Outbound  Swingby  Nominal 
Minimum  energy 

-I 
"5; 1 i:: :z 1 ;; 1 1 ::iri :E pic[ _____ -Frl 7746 E 
460  13.89  4.05  5.61 
640 

4.23  11.58  7840  7984  8110  8140 
11.08  3.90  4.01  3.17  13.98  7830  7980  8140  8170  8470  7780 

7550 yF 8010 

1990  Direct  Nominal  14.62 1 4.75  4.45  19.80  8160 ' 
400 I Minimum  energy  460  13.49  4.61 1 3.88 1 ",:",", 1 19.74  8100 8560 8560 I I 

1993  Outbound  Swingby  Nominal  52 0 ' 11.72  4.36  2.89  13.16  8520  8670  8820 ' 8850 
Minimum  energy  600  10.98 4.18 1 ",:",', 1 2.31  11.47  8510  8668  8810  8840 

1995  Inbound  Swingby  Nominal  500  11.62  3.91  3.38 
Minimum  energy  560 

4.33  14.71  9670 
11.18  3.84  3.35  3.99  12.23  9660 

""""" 

9880 9910 10051 10170 
9880 9910 10059 10220 

1997  Direct  Nominal  42 0 13.57  4.52  3.60  5.45  19.80  10460 
Minimum  energy 480 12.43  3.62 3.10 5.71  19.36  10420 

10640 10670 
10650 10680 

10880 1 I 
10900 

1999  Outbound  Swingby  Nominal  480  12.93  4.36  4.51 4.06  15.01  10850  11004  11170  11200 
Minimum  energy 680 10.01 4.19  3.28  2.53  14.76  10840  11006  11220  11250 

1999  Direct  Nominal 4 00 13.35  4.22  3.99  5.14  16.79  11230  11390  11420 

~ ~ ~~~~ ~~ 

11330 1420 
11520 1910 """""- 

12.09  3.67  3.22 
11630 

Minimum  energy 460 5.20  16.92  11200 11410 11440  11660 

1983  Venus Nominal 400 12.75  3.85  4.15 
Minimum  energy 480  11.68  3.61  3.74 

4.75  13.87  5510 
4.33  14.35  5505 

5610 5640 
5635 5665 

5910 
5985 

aAll speeds  in  km/sec. 
bAll dates  JD-2440000. 
CPericenter  altitude at Venus (h). 
dYission  Selected  on  basis of (Trip  time x CAV)min. 
eMission  selected  on  basis of (XAV)min 



TABLE 1 .-MISSION MODE  COMPARISON; 30 DAY  S'TOPOVERS - Concluded 

(b) Atmospheric  capture at  the  planet 

I Mission Selection Trip BAV 
Criterion Time (a) AvLVf3  'AFid  AvLVd. ":,", Pass?  Ard I Lvd  Pass? I Are Peric I 

[e) 

d 
1980 Outbound  Swingby  Nominal 500 7.10  4.31  8.87 4340 800 

Minimum  energy 640 6.48  4.26  8.88  4470 679 

1982 Inbomd Swingby  Nominal 540  8.64 3.88 6.25 4.76 13.20 4980 
Minimum  energy 620 8.16 3.65 5.77 4.52 12.17 4930 

1984 Inbound  Swingby  Nominal 460  7.69 3.81 9.57 3.88 12.49 5730 
Minimum  energy 480  7.66 3.85 9.88 3.81 11.56 5750 

1984 Direct  Nominal 380  8.34 4.01 9.97 4.33 15.68 5760 
Minimum  energy 420  8.02 3.79 9.67 4.23 15.81 5740 

1986 Outbound  Swingby  Nominal 52 0 6.08 3.97  9.60 
Minimum  energy 580  5.94 3.95  9.61 

Nominal 380 8.20 4.02  9.68  4.18  14.39 6550 6660 
Minimum  energy 420  7.99 3.93  9.02  4.06 14.52 6520 

~~~- 
6670 2590 

1986 Direct 
~ ~ " "  

1988 Inbound  Swingby  Nominal 
~~~ ~ 

480  8.24  4.03  6.24  4.21  14.96 7370 
Minimum  energy 560  7.61  3.78  6.01  3.83  12.06 7340 

460  7.69  4.00  9.95  3.69  11.75  7830 7979 8100  8130 
, Minimum  energy 600 6.78  3.98  9.88 2.81 ~ 12.44 1 7820 7975 I 8100 1 8130 I I %: I 3510 I 2150 

I 1990 Direct I Nominal 9.75  4.78  9.90  4.97  18  38 8140 8260 8290 8540 I 400 I 9.28 1 4.53 1 8.38 1 4.75 I 19:68 I 8120 I I 8270 I 8300 I I 8560 I I Minimum  energy 440 

1993 Outbound  Swingby 

1410  10220  10056 9880 9850 9660 12.26  3.46  8.22  4.00 7.46 560 Minimum  energy 
2710  10170 10049 9880  9850 9670 14.47 3.83  8.33 4.03  7.86 500 Nominal 1995 Inbound  Swingby 

6130 9120 8830  8800 8667 8500 11.45  2.25  8.14 4.15  6.39 620 Minimum  energy 
6530 9050 8840  8810 8668 8510 12.53  2.69  7.93 4.18  6.87 540 Nominal 

1997 Direct 
10860 10630  10600  10420 18.75  4.64 9.25  3.93 8.57 440 Minimum  energy 
10850 10620  10590  10450 18.60 4.72 9.65 4.25 8.97 4 00 Nominal 

1999 Outbound  Swingby 
840 11480  11190  11160  11003 10840 13.55 2.10  8.54  4.19 6.29 640 Minimum  energy 
980 11330  11190  11160 11003  10850 14.89 3.56  8.54  4.36 7.92 480 Nominal 

1999 Direct 

5885 5615 5585 5505 13 54 4  20 13.86 4  15 8.35 Nominal 1983 Venus 

11620 11390 11360 11200 16.53 4.32  9.44 3.78  8.10  420 Minimum  energy 
11610 11390  11360  11210 16.49 4.43  9.56  3.85 8.28 400 Nominal 

___" 

I Minimum  energy I "4; 1 7.98 I 3:66 I 11.50 I 4:32 1 14:OO I 5490 I 1 5610 I 5640 I I 5950 I I 
aAll  speeds  in  km/sec. 
bA11  dates JD-2440000. 
CPericenter  altitude  at  Venus  (km). 
dhlission  selected  on  basis of (Trip  timexZAV)min, 
eMission  selected  on  basis of (BAV )min. 



such  as  planetary  encounter  dates, velocity requirements  for circular capture  orbit,  and  entry  speeds 
are  shown.  Both  the  minimum  energy  and  the  nominal missions are listed for  each  opportunity. 

Elliptical Capture  Orbits 

The velocity increments  required  at  Venus  and Mars for arrival or departure  are  subject to  
considerable  variation depending  on  the  actual  maneuvers  performed.  For  example,  maneuvers 
performed at  pericenter  of  an  eccentric  orbit  would  reduce both  the arrival and  departure velocity 
increments since the orbital  pericenter  velocity  increases  noticeably  with  eccentricity.  Figure 7 
shows  the velocity reductions as a function  of  orbit  eccentricity.  The MEO's shown  assume that 
arrival and  departure maneuvers are  performed  at periapsis. 

The velocity reductions  are  approximately a linear  function  of  eccentricity.  Thus,  the 
variation  in ME0 with  eccentricity  is  also  nearly  linear;  requirements  for  any  eccentricity  can easily 
be approximated  by  interpolating  between  the  requirements  for a  circular orbit  and  eccentric  orbit. 
In this  document, an eccentricity of 0.7 is chosen for  both Mars and Venus. A substantial  portion of 
the maximum  velocity reductions  are  thus realized and  result in savings of 1.0 and 2.2 km/sec  at 
arrival or  departure  for Mars and Venus,  respectively.  At the  same  time,  the  orbital  periods  for 
elliptic orbits remain relatively short  compared to the  total  stopover  times - 11 hr  at Mars and 
10 hr  at Venus. 

It  should be pointed  out  that  for  any specific mission neither arrival nor  departure will occur 
at pericenter  of  the  orbit.  Recent  studies  indicate,  however,  that maneuvers  carried out as much as 
30" in true  anomaly  from  pericenter result in increases in incremental  velocity of about 10 percent 
for an eccentricity  of 0.7. Maneuvers conducted  within  this range of true anomalies are generally 

contained  herein, while somewhat  optimistic  from  this  standpoint,  are nevertheless  representative. 
i adequate to satisfy the  geometrical  constraints at  both arrival and  departure.  Thus,  the  results 

Launch Delay Effects 

The velocity  requirements discussed previously do  not include  any  launch  window  penalties 
from  Earth  orbit or planet  orbit.  Such penalties must be  considered in the  context  of  the  orbit 
operations since they  depend highly on  the particular  parking  orbit  characteristics.  Such fx to r s  as 
orbit  inclination,  pericenter  altitude,  and  eccentricity have a significant  effect on the  additional 
velocity  increments  needed to satisfy  launch  delay  requirements.  These  velocity  penalties  could 
have been  determined,  of  course,  had  particular  orbital characteristics  been  assumed. In this 
document, however, the details of  the  planet  operations  are  separated  from  the analysis  of the  total 
mission, and  therefore no launch  window  penalties  are  included. 

The  rather  complete analysis of  launch  window penalties for circular  orbits contained in 
reference 5 indicates that a velocity penalty  of  only  about 10 percent  of  the  coplanar 
departure AV  is sufficient to obtain  as long as a  60-day  launch  window at Mars. At  Earth  and 
Venus  the  same  penalty is  required to  obtain a 20-day launch  window.  These  penalties  are 
predicated  on  the use of a  three-burn  maneuver a t  departure  from a  circular orbit.  The  first  burn 
occurs a t  pericenter and increases the  orbit  eccentricity to  about 0.9: the  second  burn  occurs near 
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Figure 7.- Velocity  reduction for entering or leaving elliptical orbits. 
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apocenter  of  the  intermediate ellipse to  rotate  the  parking  orbit  plane so that  it contains  the 
departure  asymptote;  the  third  occurs  near  pericenter  and provides the  required  departure velocity. 

Although  elliptic  capture  orbits do  not lend  themselves to  generalized  conclusions  due to  the 
interdependence of the arrival and  departure maneuvers,  reference 6 indicates  that 5 percent of the 
total AV (arrival and  departure) generally will yield  a launch  window  of  up to  50 days at Mars for 
most  stay  times.  At  Venus i t  is not unreasonable to  expect  velocity  penalties  for  elliptic  orbits  of 
about half the  circular  orbit  requirements. 

The inclusion  of the  planet  departure  velocity  penalties  mentioned above  would  increase the 
ME0 values shown in figures 3 and 4 by 5 to  10 percent.  The inclusion of the  quoted  Earth 
departure  penalty  would  result in another  penalty of about 10 to  15  percent. 

A single propulsion  stage  that  performs  both  the arrival and  departure maneuvers at  the 
destination  planet  merits  consideration  as  one  means  of  providing  for  the  effects  of  launch  delays. 
The operational advantage of  employing  a  single  stage  is  that it increases the  performance  margins at 
planetary  departure. Margins must  be  available for  both arrival and  departure,  but if  separate  stages 
were employed  and  a  nominal arrival took place, the  unused  propellant would be wasted. By using a 
single stage, all unused  arrival  propellant  would  be  available  for the  departure maneuver.  Such  a 
stage would  be somewhat larger than necessary,  compared to  two optimized  stages, if arrival and 
departure  took place on time.  If,  for  example,  a single stage  space-storable  propulsion  system  were 
employed,  the ME0 values shown in figures 3 and 4 would  increase  by about 8 percent  for  a 
circular orbit  and  about 3 percent  for  an  elliptic  capture  orbit.  Although  the  propellant  tank would 
also  be  larger than necessary if  a  nuclear  system  were  employed  the  weight saved by the  elimination 
of  one  of  the  engines  actually  renders  the single-stage concept  optimum  from an ME0  standpoint. 
The ME0 would be reduced  by 2 and 5 percent  for circular and  elliptic  capture  orbits, respectively. 

SCALING LAWS 

Re  commended weight  scaling  laws, other  system  characteristics,  and  environmental 
considerations  are  presented  in  this  section.  These  data,  together  with  various  analytical 
simplifications  made to expedite  the  computational  procedures, were used in developing the  ME0 
requirements given in figures 3 and 4. 

The  data  reflect  technology  and knowledge  of the  environment  circa  1975,  which  in  turn 
reflects  the  projected  operational  capability  of  the  early 1980’s. Because of this  projection, it is 
impossible to justify all results  and  the  attendant  assumptions.  About half the  results are based on 
analyses conducted within the Mission Analysis Division; the  remainder were obtained  from  other 
NASA and  industry sources.  The  background data  and  system  descriptions are given in  sufficient 
detail to permit  interpretation of the  results  with  a  minimum of effort. 

Environmental  Factors  Affecting  System  Requirements 

Thermal protection- The  spacecraft  attitude  can  be  controlled fairly  precisely with  only  a 
modest  expenditure  of  propellant.  Therefore,  it is  assumed that  during  transit,  the  longitudinal  axis 
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of  the  spacecraft is oriented  toward  the  Sun  with  the mission module  on  the  sunward  end  of  the 
spacecraft.  The average solar  incidence angle on  the  side walls of  the  propellant  tanks is taken to be 
5". A uniform  steady-state  temperature  on  the  tank  surface is assumed.  Last, it  is assumed that  the 
absorptivity to emissivity ratio (a/€) of  the  tank  surface is 0.20,  a value lower  than  currently 
available but higher than  optimistic  projections  for  future  surface coatings. 

The received solar  thermal energy  was computed  on  the basis of  the time-average solar 
distance  for  each leg of the  distinct mission profiles. Representative values were computed  from  the 
nominal 1980  outbound  swingby,  1982  inbound  swingby,  and  1984  direct Mars missions, and  the 
Venus  stopover mission contained  in  table 1. Surface  temperatures  in  planetary  orbit,  which  include 
reradiation  from  the  planet, were obtained  from  various  sources  and  are  predicated  on  a vehicle 
attitude  that is horizontal relative to the  planet  surface. 

On the basis  of steady-state  temperatures,  and  under  the above  assumptions,  the  uniform 
temperatures over the  entire  tank  surface are as shown  in  table 2. 

TABLE 2.- SURFACE TEMPERATURES, O K  

Inbound leg 
Planetary  orbit 
Outbound leg 

Venus 
stopover 

106 
250 
116 
220 

Mars 
direct 
112 
195 
101 
220 

Mars 
outbound 
swingby 

94 
195 
117 

" 

Mars 
inbound 
swingby 

116 
195 
96 

220 

An optimum  relationship can  be  established  between  insulation weight, propellant  allowed  to 
vaporize, and  internal  tank pressure when  a  particular mission and design  is being analyzed.  In lieu 
of this  detailed  optimization, it is assumed here that all heat to  the propellant  results in boiloff. 
Under  these  assumptions,  the  insulation  weight  for j th propulsion stage, which  minimizes  initial 
mass in  Earth  orbit (e.g., ref. 7), is: 

The  corresponding  propellant  boiloff  for  the j th stage is 



The  parameters  are  defined as follows: 

Aj total  tank  surface  area,  including  forward  and  aft  bulkheads (assumed  hemispherical) 

P insulation  density 

k  thermal  conductivity of  insulation 

AT temperature  difference  between  tank  and  propellant 

e exposure  time 

h  propellant  heat  of  vaporization 

C heat leak parameter (see below) 

1 index  indicating  each previous phase of the mission where  i = 1 (Earth  orbit); i = 2 
(outbound leg) ; i = j (mission phase immediately  preceding  ignition of the  jth 
propulsion  stage) 

Pj mass ratio  (initial  mass/burnout mass)  of the  jth  stage4 

The  heat  input  to  the  propellant is based  on the use  of NRC-2  insulation  (ref. 8) with  a 
dens i ty   o f   0 .048   gm/cc  (3.0 lb/ft3)  and a  conductivity of 1.072X1U8 kcal/sec-m-"K 
(2.6X 1U5 Btu/hr-ft-OR). Temperature  differences  and  heats  of  vaporization  are  based  on  propellant 
characteristics discussed later. 

In  addition  to  the  heat  input  from  the sidewall temperatures of table 2, a  heat  input  through 
the  forward  end of the  planetary  departure stage is considered since it is adjacent to the mission 
module  whose  interior is at  room  temperature of  294" K. The  insulation  thickness  of  this  forward 
bulkhead is determined in the above manner  with Aj representing  the  bulkhead area and  a AT 
corresponding to  the 294" K temperature. 

The  effect  of  heat leaks into  the  tank  can  be  estimated  parametrically by inclusion of the 
constant  cy w,here c = 0 implies no  heat leaks. The ME0 values in figures 3 and 4 are based  on  a 
value of c = 1 (heat leaks equivalent to  the  heat  transfer  through  the  insulation).  This  assumption 
should  not  be  construed  either as a  recommendation  or  as  a design criterion.  Until  sufficient  data 
are available, any value of  c  between  0.1  and 10  could  probably  be  justified. 

Specific values of propellant  boiloff  and  insulation weights clearly depend on the  particular 
mission, propulsion  stage,  and  propellant  combination.  However,  the following general results will 
place the  influence of the  requirements  for  thermal  protection in some perspective. The  optimum 
insulation  weight  corresponds to approximately 5 percent of the weight of the  tank plus engine. 
The  corresponding  propellant  boiloff  weight  of  each stage varies between 2,000 kg and 5,000 kg. 

41f the  insulation of the  jth stage is jettisoned  prior  to  startup  the  optimum  insulation weight is independent 
of 9. Thus  in  the  above  equations, set = 1. Similarly, if the  propellant  tanks  are  topped  in  Earth  orbit (or if the 
time  spent in orbit is small) set p1 = 1 for  the  Earth  departure stage. 
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These general results  are  independent of  mission or system  characteristics. It  should be pointed  out 
that  the  ME0 values in figures 3 and 4 include  the  propellant  that would  have boiled off  during  a 
30 day  period  in  Earth  orbit. 

Meteoroid  protection- Many uncertainties  surround  the  meteoroid  protection  requirements 
for  space vehicles both because  of  a lack of knowledge  concerning  the  environment  and  because of 
incomplete  experimental  data  concerning  impact  phenomena. Nevertheless, it  is  appropriate  to 
establish  flux  and  penetration  relations so that  the  meteoroid  protection analysis can  be  treated in a 
consistent  manner. 

Flux  models:  The  following  flux  models  are suggested: 

Cometary (refs. 9  and  10) 

log Qc = -14.49 - 1.21 3 log m - 2 log r 

Asteroidal (ref. 10) 

log @a = -3 1.01 + 23.74  r - 8.635  r2 - 0.84 log m 

where 

Q number of particles/m2-sec 

m  particle mass, gm 

r  heliocentric  radius,  au 

Additional  environmental  characteristics  are: 

p = particle  density: 0.5 gm/cc  for  cometary, 3.5 gm/cc  for  asteroidal (5) P 

V = impact  velocity: 20 r" '' km/sec  for  cometary  (isotropic), 
10  r" km/sec  for  asteroidal  (unidirectional) 

The  cometary  flux  model  does  not  differ  significantly  from  the Whipple (1963)  model  and is 
generally considered to be  the  best  current  estimate of the  near-Earth  environment. 

The  asteroidal  flux  model is based on  data  from  reference  10.  The simplified model  presented 
here  does  not  consider  explicitly  the  effects of  spacecraft  heliocentric  longitude  and  latitude on  the 
flux  nor  does  it  consider  the  effect of the  asteroid's  orbit  eccentricity. However, the  maximum 
effect of these  parameters was applied  in  the  development of the simplified model so that  the  flux 
model  used  herein is somewhat conservative. The  assumptions  do  not  appear to critically affect  the 
flux values obtained since the  most  important  variation is a  function of heliocentric  distance.  The 
flux  model given is most  accurate in the 1-au to 1.6-au region. A curve fit is employed  in  the 
computations  and  irregularities in the  function  near  the Mars orbit  do  not allow a  good  fit over the 
entire  asteroid  belt region. For missions to Mars and  Venus,  of  course,  this is  of no  consequence. 
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Penetration  models: Of the  many  penetration  models which  have  been  proposed  by various 
investigators,  the  following  model (ref. 11) is suggested as representative  for single-sheet meteoroid 
bumpers: 

t 
d 
- bumper  thickness to particle  diameter  ratio 

d  particle  diameter,  cm  (particle  assumed  spherical) 

PP particle  density,  gm/cc 

Pt bumper  density,  gm/cc 

V impact  velocity,  km/sec 

f bumper  ductility,  elongation,  cm/cm 

Multiple-sheet bumper  efficiency:  Numerous  investigations have shown that  the use of 
multiple-sheet  bumpers  can  improve  the  efficiency  of  meteoroid shield structures.  Efficiency 
increases  with  increasing  sheet spacing and  it  also  appears  that  further  improvement can be  obtained 
by use  of a  low-density  absorbing  medium. Since experimental  programs are incomplete,  however, 
specific values of  efficiency  are  open to conjecture.  Until  firm  data  are  obtained,  the  somewhat 
conservative values of referewe 12 are adopted: 

where 
- 
t total  thickness  of  double  sheet 

T equivalent single-sheet thickness 

The  efficiency  factor  K, varies between 0.20 and 0.50 depending  on  the spacing between  the 
sheets  and  type  of filler material. 

Shielding requirements: Single-sheet thickness  requirements for each of the  four  distinct 
mission profiles were computed  by  integrating  the sum  of the  cometary  and  asteroidal  fluxes  along 
the  trajectory.  The  probability of no  penetrations was  fixed  at 0.99. Due to the  isotropic  nature of 
the  cometary  flux,  the  total  area  represents  the  potential  target  area  for  cometary  particles. Since 
the  asteroidal  particles will approach  the vehicle from  a  predictable  direciion,  however,  the 
projected  area of the  tank wall (Id) was used  in the  determination  of  the  probability of impact.  The 
required  thickness was then assumed to be  applied to the  entire  surface area of the vehicle to permit 
total  flexibility  in  the vehicle attitude.  Finally,  an  efficiency  factor  of 5 (K, = 0.2) was assumed. 
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In  order  to  obviate  the  need  for  rigorously  computing  the  shield  thickness  for every mission 
and  surface  area,  the  actual values used in  the  ME0 calculation  were  estimated  from  the 
relationship: 

where A is the  surface  area  and  AT  is  the  exposure time. A reference  area of 400 m2 was used, 
and  reference  exposure  times  of 500 days  (Earth arrival), 250 days  (planet  departure  and arrival) 
and 30 days  (Earth  departure) were  employed.  Surface  density  requirements  for  the  meteoroid 
shield  based  on values of  Tref are  shown in table 3 for all spacecraft  modules.  Each value reflects 
the  total  requirement.  For  example,  a value at  Mars departure  includes  the  shielding  required  for  the 
exposure in Mars orbit,  during  the  outbound leg, and in Earth  orbit.  The shielding is assumed added 
to the basic spacecraft  structure.  The relatively minor  contribution of the basic structure to the 
meteoroid  protection is neglected in this analysis. It  should also be pointed  out  that  the  ascent 
load-bearing shell, discussed later,  could provide the shielding requirement while in Earth  orbit.  This 
approach was not  employed,  however,  in  the  development of the  ME0  requirements.  In  the 
analysis, it was assumed that  the  shield  of  each  propellant  tank was jettisoned  just  prior  to  startup 
of  the engine. 

TABLE 3.- TOTAL DOUBLE-SHEET SURFACE DENSITY (CM/CM*) 

Location 
Earth  return 
Planet  departure 
Planet arrival 
Earth  departure 

Venus 
stopover 

0.99 
.87 
.87 
.60 

Mars 
direct 
1.24 
1.10 
1.03 
.60 

Mars 
outbound 
swingby 

1.71 
1 .oo 
.72 
.60 

inbound Mars I 
T " \  swingby 

Radiation protection- The shield weight  required to protect  the crew from  solar  proton 
radiation  can  represent  a sizable fraction  of  the mission module  weight and is therefore  a  subject of 
considerable  study.  The  results  presented  here  are based on a  recent  study (ref. 13) of this  factor. 

Solar events  occur  sporadically  and vary greatly in proton  fluxes  and  energy  spectra.  The  dose 
received during  the mission depends  on  the  number of events  encountered,  their  fluxes  and  spectra, 
and  the shielding protection available. The dosage also depends on  distance  from  the  Sun. Since this 
relationship is not  adequately  understood,  for convenience, the  not  unreasonable  assumption is 
made that all dosages at  any distance  are  equivalent to those  at 1 au. Because of the irregular 
variations  in  flux,  spectrum,  and  frequency,  the  only reliable method of predicting  the  radiation 
environment  for  long  duration missions is by  statistical  evaluation  of  past  data  on  solar  proton 
events to produce  distribution  functions  for  the  critical  quantities.  From  such  distributions,  model 
environments may  be generated  and assigned appropriate  probabilities of occurrence. 
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Shield requirements: With the  dose  per  event  distribution  and  the  frequency  distribution 
available, the mission-dose distribution was derived by  taking  a large number of samples. The 
number of  events per mission was  calculated,  the  dose  per  event  distribution was randomly  sampled, 
and  the  event doses summed to obtain  the  dose  per mission. Figure 8 shows  the  dose  as  a  function  of 
thickness  for  an  aluminum  shield,  based  on  a  probability of 0.99 of not exceeding  a given dose. 
Figure 9  shows  similar data  for  a  polyethylene shield. Since the  requirements  depend  on  the 
fluctuations in radiation  that  occur  during  the  11-yr  solar cycle, the  requirements  for  both  solar 
minimum  and an average solar  maximum  are  shown. 

From  these  data,  it is possible to  compute  the shield weight requirements  once  other 
specifications are made.  First,  it is assumed that  the  total  allowable  skin  dose  per mission is 
150 rem. Of this  total,  it is assumed that  20 rem per  year  accrue,  independent  of  solar  activity,  from 
galactic background  radiation. It is also assumed that  10 rem per year  may  accrue  from  onboard 
radiation. If neither  nuclear  propulsion  nor  nuclear  auxiliary  power  systems are employed,  this 
10 rem  dosage is taken  as  a  contingency  in  the weight analysis. Thus,  the  remaining  radiation  may 
be  allowed to  accumulate  from  solar events. 

Second,  it is assumed  that  the  Earth  reentry  module  (ERM) will be  used  as  a radiation  storm 
shelter. While provisions for  a  separate  shelter  within  the mission module (MM) could  be  made,  the 
storm  shelter  approach is taken since the ERM provides necessary life support  functions.  Primary 
spacecraft  maneuvers  can  be  carried  out  by brief trips  to  the MM command  center. 

Figures 8 and  9  indicate  that  polyethylene is a  more  efficient shield material  than  aluminum. 
Thus, it is assumed that  the ERM housing  within  the MM will  be covered  with polyethylene.  The 
basic aluminum  structure of the MM and ERM also afford  some  radiation  protection. 
Representative  thicknesses are as follows: 

I" structure I .22  gm/cm2 
MM meteoroid shield 1 .OO 
ERM structure  3.90 
ERM heat  shield5  1.72 

TOTAL  7.84  gm/cm2 (1 6.1 lb/ft2 ) 

In  the case of the ERM heat  shield  the  thickness given represents  the average distributed over the 
entire ERM surface.  The  dosage not  attenuated by  this  inherent  shielding  must  be  attenuated  by 
polyethylene.  The necessary polyethylene  surface  density is shown  in figure 10. The  shield is 
applied to a  surface  area of 46 m2.  This is the  surface area of an  eight-man-crew  Apollo-type 
configuration ERM designed for  an  Earth  entry  speed of 13.5  km/sec. 

Since the  onset  and  decay of solar  maximum  occurs  rather  abruptly, it is assumed that solar 
maximum  and solar minimum  each  occupy half of the 1 1-yr cycle. The  onset of solar maximum  in 
the  time  period of interest was taken as early 1977.  For missions that  take place during  the 
transition,  a mean shield thickness  was  employed. 
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The  solar  maximum  data  of  figure 1 0  were  linearized to contain  the  points  at mission 
durations  of  250  days  and  520  days  (resulting  in  errors less than  10  percent)  and  the  thickness was 
applied to the 46  m2 area.  Table 4 gives the  radiation  protection  thus  obtained  in  terms of  weight 
of polyethylene  as  a  function of  mission duration  T,  in  days. 

TABLE 4.- RADIATION  PROTECTION  WEIGHT  REQUIREMENTS  (KG) 

Solar maximum  Solar  minimum Solar mean 1 W=-186 + 14.4T 1 W = -760 + 2.1T I W = -472 + 8.2T I 
I Mission I 

1980  Outbound swingby 
1988  Inbound  swingby 
1990  Outbound swingby 
1990 Direct 
1993  Outbound  swingby 
1999  Direct 

1983  Venus  conjunctiona 
1984  Inbound swingby 
1984  Direct 
1986  Outbound swingby 
1986  Direct 
1995  Inbound swingby 
1997  Direct 

1982  Inbound  swingby 
1999  Outbound swingby 

aI f  a  Venus  mission  were  flown  during  solar  maximum, the  ME0  requirements 
shown  in  figures 3 and 4 would  increase by  about 10 percent. 

Manned  Modules 

The  following  paragraphs  present  parametric  weight  data  for  the mission module,  Earth 
reentry  module,  and  the Mars excursion  module  (including  orbiter mission payloads).  The  particular 
details of the design philosophies  and  module  weight  breakdowns  used to derive these scaling laws 
do  not, of course,  directly  affect  the ME0 values. However, the  details  are given here to provide 
some  rationale  for  the scaling laws as  presented,  and to make clear the  “bookkeeping”  system used 
in  this  work wherein  certain  subsystems  such as attitude  control  or  meteoroid  protection are 
handled  separately. Analysis of  other designs, crew sizes, or  weight  breakdowns will lead to 
alternative  module weights. 

Mission module- The mission module is the  command,  control,  experiment,  and 
communications  center  for  the  spacecraft  and serves as  the living quarters  for  the crew for  the  entire 
mission. The  spacecraft  systems  considered  a  part of the mission module  are: crew support  and 
environmental  control,  guidance  and navigation, communications  equipment  and  antennas,  power 
supply,  attitude  control,  and  scientific  and  laboratory  equipment. Of importance  in  the 
determination of ME0  requirements is the gross weight of the mission module  rather  than  the 
weight of each  individual  subsystem per se. As an  aid to  the  interpretation of the overall weight 
scaling law for  the  module,  however,  a weight statement  for  a  basepoint design is provided  in 
table 5.  This design  is based on  a  partially closed ecology  system (water  and  air  recovery),  a mission 
duration of 520 days  and an  eight-man crew: the  sensitivity  of ME0  to crew size is about 4 percent 
per man. Each weight element  indicated is believed to be  representative  of  that  subsystem,  but  the 
value shown is not based  on  a  detailed analysis. Consequently,  the weight breakdown  must  not  be 
interpreted  as  a  recommendation  of  subsystem  characteristics. 
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TABLE 5.- BASEPOINT MISSION MODULE WEIGHT (EIGHT-MAN CREW) 

Subsystem 
~ 

Crew and life support 
Guidance  and navigation 
Communications 
Scientific  equipment 
Airlock 
Centrifuge  (body  conditioning) 
Auxiliary power (1 0 kW at 500 kg/kW  including 

conditioning  and  distribution) 
Airlock usage and leakage at 2.3  kg/day 
Repressurization every 90 days 
Module structure 
Repair  and  replacement  (5  percent) 
Contingency  (5  percent) 
Gross  weight at  Earth  departure,  not  including 

meteoroid  protection,  radiation  protection, 
attitude  control  system  and ~~ ERM 

Neight, kg 
7,250 

530 
680 

2,500 
230 
230 

5,000 
3,550 
2,370 
8,350 
1,590 
1,590 

33,870 

The  total weight  required  for  supplies (e.g., food,  repressurization,  and personal equipment 
wearout) is 22  kg/day  for an  eight-man crew. The weight of  the waste  material  expended  from  the 
mission module  totals 13  kg/day,  including  airlock usage, leakage, and jettisoning of equipment  at 
various  points  throughout  the mission. 

The  most useful information in performance analyses is the mission module  weight at  Earth 
return  at  separation of the ERM. From  the  data in table  5  and  assuming  the  supply  rate is 
independent of mission duration,  the mission module  weight without supplies is 22430 kg (i.e., 
33870  kg less the  11440 kg of supplies  needed  for  a  520-day mission). The  net change in module 
weight  on  a daily basis  is an increase of 22 kg due to supplies, less the  13 kg  of jettisonable  items. 
The  partial  module  weight a t  Earth  return is thus 

W = 22430 + 9T (kg)  (10) 

Based on a  10-m  diameter  and  a  free  volume  allowance of 21.2  m3 per man,  the MM 
cylindrical  length  excluding  the  hemispherical  end  bulkheads is 8 m. Thus  the  exposed  cylindrical 
surface  area is 250  m2. Because  of  this small area (compared to a  propellant  tank)  the  required 
meteoroid shield weight is small and is,  for  practical  purposes,  independent of the mission profile or 
duration.  Consequently,  a  representative shield surface  density of 1 .O gm/cm2 (see table  3)  was 
applied to all MM resulting in a  constant shield weight of 2500 kg. 

As pointed  out  later,  a  typical  attitude  control gas requirement is 3.6 kg/day.  Assuming  a 
30-percent  inert weight fraction,  the  attitude  control  hardware weight  can  be approximated as: 

W = 1.1T  (kg) 
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Adding  the  radiation  protection  (table  4),  meteoroid shield and  attitude  control  system  hardware, 
the MM weight  (excluding ERM) a t  Earth  return  is  as  follows: 

Solar  maximum WMM = 24740 + 24.5T  kg I 
Solar minimum = 241 70 + 12.2T  kg (1 1)  

Solar mean = 24460 + 18.3T  kg 

Progressing backward  through  analysis  of  the mission to obtain  the MM weight at  Earth  departure, 
the weight  of the  expendable supplies and  attitude  control gas totaling  16.6  kg/day  must be added 
to the  Earth  return weight. 

Among  the various manned  modules, MM weight  is one  of  the  most significant in its  effect 
on ME0 requirements.  Typically, a IO-percent  change  in the  module weight at  Earth  return  results 
in a 4- to 6-percent  change  in ME0  for  the lander missions. For orbiter missions, the sensitivity  is 
increased to 6 to  9 percent. 

ZG7rtlz reel?try 1md1rle- The ERM  is a  separate vehicle contained  within the MM until 
separation  prior to  the  entry maneuver.  During other phases of the mission the ERM  serves as  the 
radiation  storm  shelter  for  the  spacecraft. Since the vehicle must be easily accessible and also permit 
mobility  within itself during  the  few  days of occupancy necessary in the  event of a solar  flare,  a  free 
volume  of 1.4 m3  for  each  crew  member is  provided. The ERM does not  depend  on  the mission 
module  and has its  own life support,  guidance  and  navigation,  auxiliary  power,  and  communications 
systems  as well as those  systems  such  as  the  heat shield and recovery  parachutes  required  of  an 
entry vehicle. The life support  (open ecology system)  and auxiliary power  supply (fuel cells) 
systems  are  adequate  for 5 days  of  independent  operation. 

The weight requirements  for  three  distinct vehicle types,  each  characterized  by  a  unique 
aerodynamic  configuration, have been  determined - Apollo,  biconic  and  cone  segment.  The vehicle 
gross weight as a function of Earth  entry  speed is shown in figure 11 .  Included in the weights  is a 
365-kg  scientifjc  payload.  Point designs for  these vehicle types  are given in reference 14. Data from 
these designs were used to establish the scaling laws from  which a parametric  study  of  these vehicle 
characteristics  (ref. 15) was conducted.  Information  from  reference 15 was used to  compute  the 
weights shown. 

As shown in the figure, the  biconic  configuration  exhibits  a  lower  weight  sensitivity to entry 
speeds  than  does the Apollo  shape. Having a sharper  forebody  cone angle, the  radiation  heating to 
the  lower  surface is reduced at  the higher  speeds. The  cone  segment vehicle is most  attractive at  the 
higher  speeds.  Since it has a high fineness ratio,  the  onset of high radiation  heat  transfer  rates  is 
delayed  and  much  of  the  heating remains  convective.  At the  lower speeds.  however,  this 
configuration is  less attractive primarily  because of its  low  volumetric  efficiency. 

For calculation of the  ME0  requirements in figures 3 and  4,  only  the  Apollo  and  biconic 
vehicles were considered.  There were two basic  premises for  this decision. First,  the  Venus swingby 
mission mode will most  probably  be  employed  whereas  the  utility  of  the  direct  mode  is 
questionable.  Second,  only  one ERM development  program will be  undertaken. As pointed  out  in 
the preceding  section, with  the  exception  of  the 1997 opposition,  entry speeds  for the swingby 
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mode  and  the  Venus  stopover can  readily  be  constrained to lie under  14  km/sec.  Thus,  the  Apollo 
configuration is desirable from  an  operational  standpoint  and will likely  require  the  least 
development  effort;  for  these reasons, this vehicle type is included  in all  swingby and  Venus 
stopover ME0 values. Conversely, no entry  speed  associated  with  the  direct missions is less than 
about  15  km/sec;  most  are  substantially  higher,  indicating  another vehicle is appropriate.  The  cone 
segment is optimum  at  the  highest  speeds  but  is  significantly heavier in  the  entry  speed regime 
associated with  the swingby mode.  Therefore,  the  biconic vehicle was  selected  for  the  direct 
missions. Use of the biconic  shape  creates  a  modest  weight  penalty at  high  entry  speeds,  but  the 
biconic vehicle is nearly  optimum  for  a wide  range  of  entry speeds. If the  biconic vehicle were the 
single  ERM to be  developed,  its  influence on the  remaining  system  characteristics  at  the  low  speeds 
would  approximate  those  of  the Apollo. 

A  unit weight  increase  of  the ERM results  in  the  same  unit increase in  ME0 as does  a  unit 
increase  in mission module weight. Because of its lower  absolute  weight, however, the  percentage 
variation is significantly lower.  A 10 percent  change  in ERM weight  results  in  an ME0 change of 
about 1 percent. 

In  addition to  the change in  ME0 caused by  a change  in ERM weight,  the  effects on ME0  of 
the use  of propulsive capture of the ERM at  Earth  return  as  an  alternative  to  aerodynamic  entry is 
also pertinent. When a  space-storable  propulsion  system is used to  insert  a crew  module  the size of 
the ERM into  an  elliptical 24-hr capture  orbit,  the  ME0 increases by 10 to 30 percent. These  results 
apply to  an  entry  speed  range of 13 to  15 km/sec. 

Mars excursion rnodule  and  probes- A  parametric design synthesis  of Mars excursion  modules 
(MEM)  is  given in reference  16.  The  primary  results of that  study are summarized  in  this  section. 

The MEM operations begin at  separation  from  the  spacecraft  in Mars orbit.  A small deorbit 
velocity  increment is applied  (at  apocenter  if  an  elliptical  parking  orbit is used)  and  aerodynamic 
deceleration  takes place until  terminal  conditions are reached.  Typically,  the MEM velocity  at  this 
point is slightly greater  than 1 km/sec.  The  main  descent engine is then  ignited  and  burns 
continuously  until  touchdown.  The  performance  requirements  include  a 2-min hover. The  low 
surface  density of the Martian atmosphere (JPL V ” 7  model  atmosphere  assumed)  precludes  the 
use  of parachutes  for  the final descent  of vehicles of the size under  consideration. 

Following  surface  operations,  the  descent  systems  are  staged  and  the  ascent vehicle follows  a 
gravity turn  trajectory to a  burnout  altitude  of  about  115 km  followed  by  a  coast  and 
circularization  into  a  185-km phasing orbit. Finally transfer is made to  the  pericenter  altitude of the 
mission module  orbit,  followed by the  subsequent  rendezvous.  A ICLpercent contingency is added 
to the  ascent velocity requirements to provide for  launch  windows  and  rendezvous. 

The design synthesis is predicated on an  Apollo-type  configuration.  A  crew size of four  men is 
assumed  with  a  surface stay  time of 30 days.  After  rendezvous  with  the mission module,  the  ascent 
vehicle weight is approximately  2400 kg and  includes  a  payload of 140 kg. This vehicle weight  does 
not  include  the  ascent  propulsion  system  inert  weight,  although  this  inert weight was included  in 
the MEO. 

Two  types of propulsion  systems  are considered-space storable (assumed  FLOX/CH,)  and 
cryogenic  (assumed O 2  /H2). The  detailed  characteristics of these  propellant  combinations are 
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defined  later.  The specific impulse values are  reduced  for MEM applications to 383 sec  and 433 sec, 
respectively,  as  an  estimate of performance  degradation  that  may arise because of engine throttling, 
restricted area ratios  due to space  limitations,  etc. 

Figure 12, based on  data  from  reference  16, shows the gross weight  of the MEM at separation 
from  the mission  module as a  function of  parking  orbit  eccentricity. As expected,  the weight 
increases with  eccentricity,  primarily  because of increased ascent  velocity  requirements.  On  the 
other  hand  the use of  cryogenic  propellants  does not result  in a MEM weight  appreciably  lower  than 
that  associated  with  the use of  space-storable  propellants.  This relative inefficiency  of  the 
cryogenics is due primarily to the large volume  required  by  the  cryogenic  propellants  and  the 
attendant increase in weight  of the descent shell that  surrounds  the vehicle during  entry  and 
descent.  The heavier weight  of  this  descent shell, together  with heavier propellant  tanks themselves, 
tends to offset the higher specific  impulse  of  the cryogenics. It is assumed that  during  the  outbound 
leg, the MEM  will be  housed in a  structure 10 m in diameter  extending  forward of the mission 
module  for  8.5 m. This housing is intended to serve primarily as meteoroid  protection. Based on  a 
unit  structural weight of  0.73  gm/cm2,  the  housing weighs 2550 kg and is assumed to be jettisoned 
in Mars orbit. 

It  is assumed that  the Mars landing missions will employ  a rover vehicle of the  type discussed 
in reference  17. This vehicle will transport  two men  in 2- to 5-day sorties for a  range of about 
800 km.  The  total  landed weight  including  structures,  expendables,  and  scientific  equipment is 
6950 kg. The gross weight  prior to  ejection  from Mars orbit is also shown in figure 12.  This weight 
decreases slightly with  eccentricity because the  deorbit  maneuver  takes place at  apocenter  and  the 
vehicle is not  returned  to  orbit.  The  description given here is not  intended  to be  a recommendation 
of the  characteristics  of  (or, necessarily, the need for)  a rover vehicle. It is merely  a documentation 
of the  assumptions  relevant to  the  ME0  computations. 

It is further assumed that  10,000 kg of scientific  probes are deployed  near  the  planet.  These 
probes  and  the rover can  be  housed  in  a structure  4  m long during  the  outbound leg, the weight of 
the  structure being 1,000  kg.  For  the  orbiter missions, this  10,000-kg  probe  weight plus the 
1,000-kg  housing  represents  the  entire  weight  off-loaded  from  planet  orbit.  In  the  Venus  swingby 
mode,  an  additional 2,300 kg  of  probes are deployed  at  Venus passage. 

The  data  summarized in figure 12 were  used  for the ME0 calculations.  For  those missions 
using either  nuclear  or  cryogenic  propulsion  for  the arrival and  departure maneuvers at Mars, 
cryogenic  propulsion was considered  for  the MEM and rover. Similarly, for missions using storable 
systems  for  the  major  maneuvers,  storable  propulsion  was  used  in  the MEM and rover. Although  this 
factor does not materially affect  the MEO, it is important  conceptually in that  it  reduces  the 
number of propulsion  systems to be  developed. 

The  sensitivity  of ME0  to  the weight  off-loaded at  Mars can  be estimated by interpolation 
between  the  ME0 values for  lander  and  orbiter missions shown  in figures 3 and 4. For  the  Venus 
orbiter mission, the  sensitivity is indicated  by  presenting  two  different  probe  module weights, as 
discussed earlier. 
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Propulsion  System  Characteristics 

The  propellant  and engine  characteristics  recommended  for use in performance analyses are 
defined in table 6. The  data were obtained  from  references 18  and 19 and  from discussions with 
NASA personnel  concerned  with  chemical  and  nuclear  propulsion  system  technology  development. 

TABLE 6.- PROPULSION SYSTEM CHARACTERISTICS 

Propellant 

N2 04 /A50 
FLOX/CH4 
0 2  /HZ 
H2 

Delivered 
Isp, vac. 

330 
405 
45 0 
850 

Specific 
gravity 

1.21 
1.06 
0.318 
0.0677 

Heat  of 
vaporization, 

kcallkg 

99 
43 

108 
108 

I !  Boiling 
point 
OK at 
1 atm 

292 
86 
20 
22a 

Engine 
~ 

Thrust t o  weight 

50 
100 
100 
- 

Weight, 
kg 

- 

" 

- 

10,500 

aPressure of 2 a tm 

The last three  systems in the  table are  representative of space-storable ( S ) ,  cryogenic  (C), and 
nuclear  (N)  propulsion  systems, respectively.  FLOX/CH4 was chosen as the  space-storable 
propulsion  system  for use in the  ME0  calculations  rather  than,  for  instance, FLOX/MMH or 
OF,/MMH,  because it will probably  cost less to  produce,  the  fuel  and  oxidizer are more  nearly 
temperature  compatible,  and  the specific  impulse is slightly  higher. The  influence  on  ME0  of using 
one of the  other space-storable  propellants,  however,  would  be minor. 

For  the  cryogenic  system 0 2 / H 2  is recommended because it is inexpensive,  it may be 
employed in some  manner  by  the  spacecraft life support  system  and  it delivers a high  specific 
impulse.  Its  only  disadvantage  relative to F2 /H, , for example, is its  low  density. 

N204/A50 is representative of Earth-storable  propellants.  This  system was not used for  any 
major  maneuvers in calculations of the  ME0  requirements  shown in figures 3 and 4. In all cases, 
however, it was used as the  midcourse  correction  system. 

The  specific  impulse values are based on  the use of  high  chamber  pressures and 
correspondingly large area  ratios.  The  density values represent  the weighted average for  the 
propellant  combination based on  typical  mixture  ratios.  The  heat of vaporization  and boiling point 
are  shown  for  either  the  fuel  or  oxidizer,  whichever  has  the  lower  boiling  point  (i.e., FLOX and 
H2).  The  thermal analysis was carried  out using these  data  for  the  propellant as  a  whole,  rather  than 
considering  the  fuel  and  oxidizer  separately.  The use of the lower  boiling point  results in modest 
conservatism. 

The ME0 requirements  include  the  effects of optimum stage  thrust-to-weight  ratios.  For  the 
chemical  systems,  an  optimized  engine  size  and  a  100:  1  thrust-to-weight  ratio  were  considered  for 
each  major  propulsive  maneuver.  For  the  nuclear  systems,  the  optimum  number of engines of  the 
given weight and  thrust level was determined  for  each maneuver. 
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The  most  important  performance  characteristic of a  propulsion  system  for  manned  planetary 
missions is, of course,  the specific  impulse. So long  as the values used here are  reasonably  consistent 
with  actual values of  future  systems,  however,  the  actual ME0 values will change  only  slightly from 
those  quoted  in  this  document.  For  instance,  a change in specific  impulse of 20 sec  results  typically 
in a  12-percent  change in ME0  for  both chemical  systems  and  a  5-percent  change  in ME0 for  the 
nuclear  system. 

The  effects of the engine  characteristics  on ME0 are less. For  both  the chemical and  nuclear 
systems, a 20-percent  change  in  engine  thrust-to-weight  ratio  changes ME0 by  about  5  percent. 

Structural Scaling Laws 

Prirmry str~lctrrre weights- Ideally,  any  weight scaling laws should be based on  prior 
preliminary design studies.  Moreover,  these  studies should  consider  various  advanced  materials  and 
design concepts  and  should  include a wide range of propellant loadings and  propellant  types. 
Whereas one  recent  study  (ref.  20) fulfills  some of these  requirements  for  nuclear stages, no similar 
activity  has  been  undertaken  for  chemical  stages.  Consequently,  the  approach  taken  here is first to 
establish  the  functional  relationships  among  inert weight, propellant  loading,  and  propellant  type 
from  the  many chemical vehicles that have been produced  or carried through a substantial 
development  program.  Finally,  some  effects of advances in technology  and  of designing vehicles 
expressly  for interplanetary missions are estimated  by including  the  nuclear  stage point design with 
the  current chemical vehicles to establish the  recommended weight scaling law. 

A compilation of chemical  stage  weight data,  and  a weight scaling law that agrees very  well 
with  these  data, are given in reference  21.  Figure 13 is a  plot of Wsuo .’ as a function  of  Wpo-9, 
where W, is the weight of primary  structure, u is the  propellant specific  gravity and Wp is the 
total  propellant weight. Note  that  the  data  points can  be approximated  quite well by  a  straight  line, 
leading to  the  functional  relationship 

where K reflects  the  minimum  weight of the  subsystems regardless of propellant  loading.  Note  also 
that if the  total  propellant weight Wp is distributed evenly among  n  separate  tanks,  the  total 
weight of all tanks  becomes 

h 0 - 1 w * 0 * 9  
wsn - - , o .  5 3 3  + nK (13) 

where  for  current  systems A = 0.194 and K = 500 if weights  are  in  kilograms, and A = 0.21  and 
K = I 100 if weights are in  pounds. 

Since the  data in figure 13 reflect a variation in u of  greater  than 4 to 1,  it is reasonable to  
expect  that  the above  relationship will remain valid for another 4 to 1 variation (from 02/H, to  
Hz). Superimposed  on  the  figure  (point 1)  is the weight data  for  the  nuclear  module  (with  the same 
inclusions and exclusions that  pertain to  the chemical  stages) for  ascent  to  Earth  orbit.  The 
agreement  with  the average chemical  data is remarkable - the  computed value of A is 0.204. 
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Figure 13. - Structural weight  correlation  for  current  systems 
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Subsequent  accelerations  on  the vehicle will, in general, be  much less than 1 g  in  contrast to 
the  ascent  accelerations  of several g’s and  the large bending  moments  at q04nax. To take  advantage 

of  this  situation,  the  ascent  loads  in  the  nuclear vehicle are  borne  by an external shell, which is 
jettisoned  prior to departure  from  Earth  orbit. This ascent load-bearing shell represents slightly 
more  than half of the  total stage structure. Figure 13 (point 2) shows  the stage weight after  the  shell 
is jettisoned.  The  corresponding value of A is 0.088. This design concept can  obviously  be  applied 
to chemical stages as  well.  While the savings in weight  may not be as pronounced  (for  instance. 
heavier gauge materials  may  be  needed to withstand higher internal pressures), they  are  assumed 
here to be  of the same order. 

More definitive  studies  are  required to determine  the  utility of this  concept. Meanwhile, the 
following  weight scaling law for  n  tanks is recommended: 

0.08noS1W 
w, = + 500n kg  , o .  5 3 3  

0 . 0 9 n 0 * 1 ~ p 0 . 9  

, o .  5 3 3  
w, = + llOOn l b  

The  combined  weight  of  the  ascent  load-bearing shells for  the  Earth  departure,  planet arrival, 
and  planet  departure stages is on  the  order of 50,000 kg regardless of  spacecraft  propulsion  system. 
To  determine  the precise on-orbit  payload  requirements of the  Earth  ascent  boosters,  this weight 
should  be  added to  the  ME0  requirements. 

This design concept  may  be  unattractive  from  the  standpoint  that  the  jettisoned  material is 
large and heavy  and could pose a serious  threat  to  other  Earth  orbiting vehicles or  perhaps to land 
masses. This is particularly  true if multiple  Earth  orbit  rendezvous of such vehicles is required. 
Other  studies  (ref. 22), however,  have  indicated  that similar reductions in structural weight  may also 
be achieved  in the  future by use of  advanced  materials (e.g., beryllium or  titanium),  better 
fabrication  techniques (e.g., honeycomb  or  monocoque),  and  more  rigorous  analytical  techniques to 
more  accurately  predict  the  structural  loads. While these  conclusions are based  only  on a  study of 
large launch vehicles, it  is reasonable to assume that  the design  of spacecraft  propulsion stages could 
also profitably  employ  such  technology.  Inert weight reductions are worth striving for,  at least from 
the  standpoint of ME0 requirements.  For  instance, if inert weights appropriate to current vehicles 
were employed  in  the  ME0  calculations,  the  ME0  requirements would increase by 15 to 40 percent 
depending  on  the mission-system  characteristics. 

Other  structural iterns- Specific values of  weights  for the following items were obtained  from 
the  spacecraft design  of reference 20. The design  is based  on  10-m-diameter  modules.  The  following 
relationships  are  based  on  the  point design modified to reflect a linear  dependence  with  surface 
area,  and  they are considered  independent of propellant  loading  and  propellant  type. These  weights 
also  are  predicated  on  withstanding  only  the  loads  encountered  after  Earth  orbit  insertion. 
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Interstage  structure:  The  following  weight  relationships  apply to interstage  structures  that 
enclose  nuclear  engines,  enclose  chemical  engines,  and  connect  propellant  tanks  for  which  the  upper 
tank has no engine,  respectively: 

W = 48(D, + D2) (1 7 )  

In  these  expressions  and  those that follow, W is in kilograms, and  Dl  and  D2  are  the  diameters,  in 
meters,  of  the  interconnected  modules. 

Mission module  adapter: This adapter  connects  the MM to the  planet  departure stage. The 
weight  relationship  is: 

Clustering structure: If two  or  more stages are connected in parallel, the weight  of the 
required  structure  is: 

W = 970(n - 1) (1 9) 

where n is the  number of stages. 

Docking  mechanism: Weights for male and  female  docking  mechanisms,  including  structure 
and  actuating mechanisms,  are estimated as: 

W = 47D  (male) 
W = 130D  (female) 

Clustering structures  and  docking mechanisms  have  applicability, of course,  only when rendezvous 
in Earth  orbit is carried  out.  To avoid  specification of particular  Earth  orbit  operations in the ME0 
calculations,  a single launch was assumed.  Since the  interstage weights  depend on the  module 
diameters,  a  value of 18 m was assumed  for  the  Earth  departure  stage.  A value of 10 m was assumed 
for  the  planet arrival and  departure stages. 

Planetary  Aerobraker  Systems 

Although  atmospheric  braking to  orbit  about Mars and  Venus is an  attractive  mode  of  capture 
when compared to propulsive  braking,  this  mode  results in a  much  more  complex  system. Moreover, 
the  system  requirements  are very sensitive to  the  environment. vehicle  characteristics,  and  trajectory 
parameters.  Additional  constraints  are  imposed by packaging,  tolerable  deceleration levels, and 
approach  guidance  accuracy. 

As part of a  detailed  feasibility study  (ref. 23), these  rather  complex  interactions were 
analyzed  in  some  detail  and  representative  aerobraker  performance  capabilities  determined.  The 
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primary  results  and  applicable  environmental  and  system  characteristics are shown  in figure 14, 
which  depicts  the  equivalent  aerobraker mass ratio (i.e., ratio of  mass  before atmospheric  entry to  
mass after  orbital  capture) as a  function of entry  speed.  The  results  thus  include  the  propellant 
required to insert  the  spacecraft in the  capture  orbit  after  skipout.  The  entry  speeds  encompass  the 
range appropriate to  both Mars and Venus. Note  that  for  a given speed  the  heat shield weight 
requirements are slightly less for  Venus  capture. While the  peak  heating  rate is higher in  the Venus 
atmosphere,  the  integrated  heat  flux  is  somewhat  lower. 

The  aerobraker analysis included  parametric  variations  in vehicle L/D, ballistic coefficient, 
atmospheric  properties,  and  limiting  criteria  such  as  maximum  deceleration or minimum  pullup 
altitudes. Conservative estimates of the  atmospheric  properties were  used on the  assumption  that 
adequate  definition  of  the  environment will be at  hand  before  any  actual designs are  started:  the 
analysis did not consider  system design requirements covering the  current wide range of 
uncertainties. 

Midcourse  Corrections  and  Attitude  Control 

Midcourse  velocity  corrections- From  reference 24 the  recommended  total velocity 
requirement  for  each single leg of the mission (e.g., Earth-Mars  and  Mars-Venus) is 100 m/sec. Based 
on probable navigation accuracies and  implementation  errors,  there is a  virtual 100 percent 
probability  that  this  requirement will not be  exceeded.  Earth-storable  propellants were used  in the 
ME0 calculations  fur  these  maneuvers. 

No firm  requirement  for maneuvers in planetary  orbit  has  yet been defined,  although  for  the 
Mars landing mission a  10-percent  increase in the MEM ascent velocity requirements  for  rendezvous 
was included. 

Because of the wide  variation possible in Earth  orbit  operations (varying from  a single launch 
of a large post-Saturn  launch vehicle to multiple  rendezvous),  no  Earth  orbit velocity requirements 
are established.  Thus,  the ME0 values calculated  would  apply to  the spacecraft  mass  after  any 
rendezvous  maneuvers  had  been  completed. 

Attitude control  requirements- Attitude  control  fuel  requirements generally are very modest 
and essentially independent of the mass of propellant  required  at  the  planet.  Rather, nearly all of 
the  fuel is required to stabilize  the mission module  during  the  inbound leg, provided the  control  jets 
can be installed at  the maximum  distance  from  the  spacecraft  center  of gravity. This is due,  of 
course, to the relatively short  moment arms  which  exist after  the  propellant  tanks  used  at  planet 
departure are jettisoned. 

The  spacecraft is considered  nonrotating  but  with  a  centrifuge  aboard  for daily gravity 
simulation  for  the crew. Other  disturbances  considered  are  internal  and  external  movement  of  the 
crew,  solar pressure, and  realinement  of  the  spacecraft  longitudinal axis toward  the Sun each  day. 
This is made necessary since it is likely that  between  alinements  the  attitude will  be held to an 
inertial  reference. 
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Figure 14.- Aerobraker effective mass ratio. 



The  alinement  toward  the  Sun (or some  other  suitable  reference)  is assumed accurate  within 
1" in  a  limit cycle mode. During  1 hr  each  day,  the  accuracy  increases to 0.1" for daily navigational 
sightings, photography  of  some  event,  etc. 

The  resulting  fuel  requirements  are  about 7.2 kg/day  during  the  inbound leg and at  least  one 
order  of  magnitude less during  the  earlier phases of  the mission. For convenience in the  ME0 
calculations,  an average value of 3.6 kg/day is taken  as  the  requirement  for  the  entire mission and 
added to the mission module  expendables.  The  underlying  assumptions in the  determination of  this 
requirement are considered  reasonable: it  should be pointed  out,  however,  that  the  attitude  control 
system  characteristics  may  vary  considerably as a  function  of vehicle and  crew  dynamics, 
experiment  requirements,  event  schedules,  and  system  configuration. 

National Aeronautics  and  Space  Administration 
Moffett  Field, Calif., 94035,  Sept.  3,  1970 
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APPENDIX 

SAMPLE CALCULATION OF REQUIRED ME0 

A  sample  calculation  of the required  mass  in  Earth  orbit is included  here to provide a  fuller 
understanding  of  the  data  presented  in  the  body  of  the  report  and to aid those  analysts  who  might 
wish to conduct analyses of  a  similar  nature.  The 1986  nominal Mars stopover  lander mission using 
a  Venus  swingby is discussed. The  trajectory  data  for  this mission are given in  table l(b). With the 
use of the NACA  propulsion  system  combination  calculations  for  both  nuclear  and  chemical stages, 
as  well as those  associated  with  atmospheric  capture at Mars, can  be  illustrated. 

The  determination of the  ME0 begins with  the  total weight returned to Earth  and progresses 
backward  through  the mission to  obtain  the gross weight  in Earth  orbit.  The  calculation is therefore 
divided into several parts which correspond to maneuvers or legs of  the mission. 

TOTAL WEIGHT PRIOR  TO  SEPARATION OF MISSION MODULE (MM) 
AND  EARTH  REENTRY  MODULE  (ERM) 

From  equation 1  1 and figure 11, 

MM = 24170 +(12.2)*(52Odays) 

= 30,514 kg 

ERM = 5750 kg 

TOTAL WEIGHT JUST AFTER DEPARTURE  FROM  MARS (WDM) 

To  obtain WDM, expandable  supplies  at  a  rate of 16.6  kg/day  must be added to  the MM and 
ERM weight. Also, midcourse  velocity  correction  requirements  must  be  considered. 

Expendables: 

EXP = (16.6 kg/day)*(l70  days) 

= 2822  kg 
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Midcourse correction  requirements: 

Because of  the small  weight requirements  for  the  midcourse  correction, a  simplified 
calculation is used to  determine  the weight  requirements.  The values obtained are  conservative, 
however. 

The AV required is 100 m/sec.  The  propulsion  system  selected  is N, 04/A50 which  has 
an Isp = 330 sec. Therefore 

1-I = exp 100 m/sec - 0 . 1  
g(330 s e c )  - exp 0.0098 (330) -  = 1.0314 

The engine weight  is  fixed at  45 kg (1 00 Ib).  Then 

 rope 1 lan t  + MM + ERM + EXP + Wengine 
P =  . . . .  

P4bl + EFN + EXP + Wengine 

where  Wpropellant = 1229 kg. Then  from  equation (1 2) 

0.21C1255) O n 9  - (0 .21)  (603 .0 )  = kg 
( 1 . 3 3 ) ' ~ ~ ~ ~  1.642 h a n k  = 

~~ ~~. ~ - 

Adding Wtank (109), Wenme (45),  and Wpropellant (1229),  the  total weight  for the  midcourse 
correction is 1383 kg. Then, 

Midcourse 1,383  kg 
EXP 2,822 
MM 30,5  14 
ERM 5,750 
WDM 40,469 kg (89,234 Ib) 

TOTAL WEIGHT PRIOR  TO  DEPARTURE FROM  MARS ORBIT (WDMO) 

The  propulsion  system  selected for  the Mars departure maneuver is the  cryogenic (0, / H 2 )  
system  with  the  characteristics given in table  6.  The  stage  thrust-to-weight  (T/W)  ratio is optimized 
for  this  maneuver. That is, a computer program assesses the  effects of gravity losses and  determines 
the T/W that gives the  minimum gross weight for  the stage. The  optimization  procedure  for  the T/W 
is not discussed since the  primary  purpose is to illustrate  the  use  of  the scaling laws. The basic 
procedure relies on  empirical equations  of  the gravity  loss data  contained in references 25 and  26. 
The  optimum T/W is 0.38 for this Mars departure maneuver. 
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The relevant equations  required to obtain  the stage weights are given below. Note  that  these 
are  transcendental  equations  and  hence  cannot be solved algebraically. The  solution  found  by 
computer  iteration is  given. 

where 

AV 

VG 

GO 

ISP 

where 

velocity requirement  from  table  l(b) 

gravity loss 

acceleration of gravity of 0.0098  km/sec2 

propellant specific impulse 

lJ= WDM + i n e r t   w e i g h t  . . + "~~~~~ i g n i t i o n   p r o p e l l a n t  
WDM + i n e r t   w e i g h t  

Inert weight = tank weight + engine weight + insulation  weight 

Note  that  the  meteoroid shield weight is not  included in the  inert weight equation since it is 
assumed to be jettisoned  just  prior  to  ignition of the stage. 

Tank  weight: 

One tank,  as  opposed to multiple  tanks, is used in  this  example. As noted  above,  the  solution 
to the  relevant  equations  cannot be determined algebraically. The  solution in terms of total 
propellant  loading is therefore given without  illustrating  the  iteration  technique.  The  total 
propellant weight is 27,825 kg (61,352  lb);  it  includes  both  ignition  and  boiloff  propellant  and 
hence  represents  the full propellant weight at  Earth  departure. Storage of this  amount of propellant 
requires  a small cylindrical  tank  with  hemispherical  ends  with  a radius of  2.06  m  (6.75 ft)  and  a 
length of 4.12  m (1  3.5  ft).  The  surface area of the side walls and  one hemispherical end is therefore 
79.79  mz  and  the  forward  bulkhead area next to the MM is 26.6 m2.  

From  equation (1  4a) 

where K = 500 + 154  kg  for  interstage  structure. 
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Engine  weight: 

The  optimum  thrust  is 26,821 kg (59,140 Ib)  and  therefore  from  table 6, the engine weight is 
268 kg. 

Meteoroid shield weight: 

From  equation (9) and  table 3, 

- (79.79)  (380) l' 
tact = 10 kg 1 = 6.72 - (400) (250) m2 

Thus  the  meteoroid shield weight = (6.72)*(79.79) 

= 536 kg (1 182 lb) 

Tank  insulatior weight: 

From  equation  (1)  and  table 2, the  insulation  requirement  for  the side walls and  forward 
bulkhead  (which is next to the mission module  for  the Mars departure  stage) is  given by  the 
following  equations: 

Sidewall (A = 79.79 m2): 

PkC1 + 1) CT,) 
'ins (108  kcal/kg)  (1.614)  (1.19)  (1-.611) 

where 

p = 48 kg/m3 

k = 9.26X 1 (r4 kcal/(day-m-OK) 

Ts = (30)( 195-20) + (320)(117-20) + (30)(220-20) = 42290 (days - OK) 
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Forward  bulkhead  (A = 26.60 m2): 

where 

TF = (294-30)(30 + 320 + 30) = 100,32O(days-"K) 

total  insulation = 405 kg  (893  lb) (A131 

Note  that  no gravity losses are included  in  the m a s  ratios. Since the losses have not  yet  been 
determined,  the  assumption  is  made  that  the  effect  on  the  insulation weight is small and  hence can 
be neglected. 

Boiloff propellant: 

It  should  be made clear that  the  inert weights are  based on the  total  propellant  loading at  
Earth  departure.  Some  propellant,  however,will have boiled  off  prior to ignition.  From  equations(2) 
and (A1 3) the weight of this  boiloff is: 

\$bo = (405 kg)*(1.614)(1.19)(1.61  1) 

= 1253 kg (2763 lb)  

This boiloff is assumed to occur in three phases: Earth  orbit,  outbound leg, and Mars orbit.  The 
total  boiloff  for  the Mars departure stage is therefore divided into  three  parts  according to a 
time-temperature  ratio as follows: 

E a r t h   o r b i t  

The gross weight  of  the  spacecraft  immediately  prior to ignition of the Mars departure stage 
(WDMO) is then given as  follows: 
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WDM 40,469  kg 
Mars departure  ignition  propellant 26,572 
Mars departure  tank weight 2,123 
Mars departure engine  weight 268 
Mars departure  meteoroid shield 536 
Mars departure  insulation  weight 405 
WDMO 70,373  kg  (155,172  lb) 

The  gravity  loss for  the Mars departure stage is 0.01 km/sec so that p = 1.614  from 
equation  (A7). This  value  agrees  with the value of p from  equation  (A8) so that  the  iterative 
solution  is valid. 

TOTAL WEIGHT AFTER MARS ARRIVAL (WAMA) 

The  boiloff  weight  for  the Mars departure stage  must be included  here.  The  total  weight 
off-loaded in Mars orbit  from figure 12, based on  the use of  cryogenic  propellants  and  a  circular 
orbit,  is: 

MEM 32,500 kg 
Probes 9,000 
Rover 11,000 
Housing 3,460 
PEM 55,960 kg 

The  expendables  consumed  during  the  30-day  stay  time  at Mars are (1 6.6)*(30)  days = 498 kg. 

WAMA is therefore: 
WDMO 70,373 kg 
Mars departure stage  boiloff 150 
PEM 55,960 
Expendables  498 
WAMA 126,98 1 kg (279,993  lb) 

TOTAL WEIGHT BEFORE MARS CAPTURE (WBMC) 

Aerodynamic  capture is used at Mars. From  figure 14,  the  aerobraker effective mass ratio  for 
an  entry  speed of  9.6  km/sec is 1.19:  therefore,  the WBMC is (1. I9)*( 126,98 1) = 15  1,107 kg 
(333,192 Ib). 
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TOTAL WEIGHT AFTER  EARTH DEPARTURE (WAED) 

As before,  the following  weights are  added  during  the  outbound leg. 

WBMC 151,107  kg 
Venus  probes 2,500 (fig. 12) 
Expendables 5,312  (16.6 * 320) 
Mars departure stage  propellant  boiloff 927 
Midcourse correction 10,221 
WAED 170,067  kg 

The  midcourse  correction is 200  m/sec since the  outbound leg of  the mission is composed  of 
two  trajectories,  Earth-Venus  and Venus-Mars. The calculation  of the weight  requirement  is  exactly 
the same as for  the  inbound leg. 

TOTAL WEIGHT IN  EARTH  ORBIT (MEO) 

The propulsion  system  used for  Earth escape  is  a  nuclear  stage  with the  characteristics given in 
table 6.  The  approach  taken is to optimize  the  thrust to  weight  of the stage  by  selecting the 
appropriate  number  of  nuclear engines.  Since this procedure  requires  iteration,  only  the  solution is 
given here.  Two  engines  represent the  optimum  number, resulting in  a  total engine  weight of 
21,000  kg  and  a  thrust of 68,000 kg. The  total  propellant  loading is 145,450 kg  of  which 2,725  kg 
is boiloff  propellant.  A  73-ft-long  cylindrical  tank  with  hemispherical  bulkheads  with  a  16.5-ft 
radius  (33.0  diam)  contains  this  volume of propellant.  The  total  tank  surface area is 1,017  m2. 

Tank weight:  From equation  (14a) where A = 0.08 and K = 500 plus 724 kg  for  interstage 
structure, 

Meteoroid  shield: 

Insulation 

where p and  k are  as  before and 

Ts = (30) * (220-22) = 5940  (days - OK) 
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Boiloff  propellant: 

WbO = 1790(  1.6  1 1)kg = 2880 kg 

All this  boiloff  occurs  during  the 30 days  in  Earth  orbit. 

The gross weight  of the  spacecraft  immediately  prior to ignition of the  Earth escape  stage 
(WBED) is given as  follows: 

WAED 170,067 kg 
Earth  departure  ignition  propellant  142,725 
Earth  departure  tank weight 16,077 
Earth  departure  engine weight  2 1,000 
Earth  departure  meteoroid shield  weight 8,372 
Earth  departure  insulation weight 1,790 
WBED 360,031  kg 

The  gravity loss for  the  Earth escape  stage is 0.37  km/sec so that p = 1.68. 

The  following  weights must be added to WBED in order to  account  for  the 30-day time period 
in  Earth  orbit. 

WBED 360,031 kg 
Mars departure stage  propellant  boiloff 176 
Earth escape  stage  propellant  boiloff 2,880 
Expendables  498 
ME0  363,586  kg 
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